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ABSTRACT

A key first step in many large-scale high-performance scientific computing applications is the distribution
of the computational domain across all participating processors of a parallel computing platform such as a
shared memory machine, cluster or a tightly-coupled supercomputer. The primary goal of such a
partitioning step is to ensure that the computational work performed by each process remains
load-balanced throughout the execution of the parallel application. In this project, a general-purpose
parallel partitioning tool, code-named PLATO, was designed and implemented. PLATO assumes that the
workload is a set of points in an n-dimensional metric space. These points are abstractions of
computational units that may represent point-like computational units such as celestial objects in
astrophysics, atoms in materials sciences and molecules in biology/chemistry, or may represent more
abstract computational units such as grid points in finite difference methods, grid elements in finite element
methods or n-dimensional points in the feature space of a host of other applications.

PLATO supports several key and useful capabilities, namely: (a) multiple load partitioning strategies, (b)
support for arbitrary user-defined processor topology, (c) pre-fetching data from neighboring processors
based on user-defined parameters, and (d) support for arbitrary number and types of attributes associated
with each point in the computational domain. PLATO is implemented in the C programming language
using Message Passing Interface (MPI) for inter-processor communications and its parallel performance
tested on up to 48 processors of a shared memory machine. This report includes a detailed performance
study of PLATO using parallel speedup and iso-efficiency as the two main metrics of parallel performance.
In addition, a user manual and DOXYGEN generated code documentation have been included for
completeness.

1. Introduction

Data sets consisting of a large number of points often represent the computational domains of a broad class
of large-scale spatial data analyses applications. Such analyses are commonly performed on parallel
computers to decrease the analyses turnaround times. One of the key first steps for any large-scale parallel
spatial data analysis algorithm is the efficient mapping of the n-dimensional point space to the rank space
of the participating processors. Thus, a software capable of distributing the data into partitions that
guarantees that the workload of subsequent computations on each processor remains balanced is very
useful to numerous parallel spatial data analysis applications.

PLATO (Parallel Load Assignment Tool) is a general purpose, application-independent tool for efficiently
distributing any point data set amongst a set of processors arranged in any topology. By design, PLATO
supports an arbitrary number of attributes per point and an arbitrary processor topology, or the spatial
mapping of processors into n-dimensional space. Pre-fetching from neighboring processors and different
load assignment methods are also supported. In this report, we present a detailed performance analysis of
PLATO across multiple use cases and discuss how the implementation incorporates user-defined
parameters to operate as a general- purpose tool.
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2. Background

Atom probe tomography (APT) is an example of an application that requires parallel computers to
effectively analyze the voluminous atomic data that is gathered by atom probes. In APT, the position of
atoms can be represented as abstract points in a three-dimensional geometric space. Materials scientists
often analyze these massive APT data sets, consisting of several million to billions of atoms, to identify and
track nano-scale clusters of atom species as the material sample undergoes thermodynamic changes.
Cluster detection algorithms rely on computing spherical range queries to determine the number and types
of atoms within a radial distance from each atom in the data set. For these algorithms to operate efficiently
in parallel, the atoms need to be distributed evenly amongst the processors while maintaining spatial
locality to minimize inter-processors communications. PLATO is designed to provide the very first parallel
partitioning step if the point data set across the various processors.

3. Implementation

PLATO is implemented using the C programming language and Message Passing Interface (MPI) for
inter-processor communication. Once the data is read into PLATO, it defines its partition boundaries based
on the data and user through MPI. Upon completion, each process contains only those points whose
positions fall within the processor’s boundaries in the data space.

3.1 Communication

PLATO uses MPI to communicate by sending point data sending to receiving processes, each process
responsible for computations on a single sub-division of the point data set. Each point’s data is sent
asynchronously using non-blocking point-to-point communication methods, which allows PLATO to
compute the destination process of other points or receive points from other processes while waiting on the
prior sent points to complete. In our case, this method is preferred over synchronous blocking methods as
PLATO makes use of the time between asynchronous calls to perform other tasks.

Additionally, PLATO implements batched sends and receives, or sending/receiving a variable number of
particles per MPI call. The default batch size PLATO is close to the highest possible and changes
dynamically depending on the size of each communication. However, a user can override the value of the
batch size, and while the lowest value of 1 is allowed (which would send a single particle with each MPI
call), higher values generally result in lower runtimes. Due to the heterogeneous nature of different
computing platforms, the user may wish to override the default value as the optimal batching amount may
vary depending on the platform being used.

3.2 Defining Virtual Boundaries

Virtual boundaries are the boundaries along each coordinate dimension of the spatial sub-division mapped
to each processor. Virtual boundaries are simply the maximum and minimum value of each dimension that
belong to each partition or process. If a given particle’s position is greater than the minimum and less than
the maximum value for all dimensions of that partition, it is placed in that partition. It is important to note
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that a particle may, depending on the desired partitioning result and particle distribution, be placed into
multiple partitions.

Figure 1. Geometric-based partitioning. Figure 2. Load-based partitioning.

PLATO supports two different strategies to map the data space onto to the rank space of the processors.

3.2.1 Geometry-based approach

Geometry-based boundaries are often used when the distribution of points is not relevant to the
computation or when the position of the points is of greater importance than the load on each processor.
These boundaries are simple to compute; the span s of each dimension is divided evenly by the number of
processors along that dimension in the rank space as specified by the processor topology. The value of the
upper and lower boundaries, vu and v`, respectively, in the 1 dimensional case for a process of position r is:

vu =

(
s
p

+ M
)

(r + 1) + ε, v` =

(
s
p

+ M
)

r + ε (1)

where p is the total number of processors and m is the minimum value of all points. For the dth dimension,
the upper and lower boundaries are computed using equation (1) d times. Given 2-dimensional spatial data
for 12 points, the resulting boundaries are represented in Fig. 1, where each processor requires d upper and
lower boundaries. In this case, the points are not very evenly distributed; the resulting partitions contain a
maximum of 8 points and a minimum of 1 point each for a total of 12.

3.2.2 Load-based approach

When the points being partitioned have an uneven distribution, a simple geometric partitioning strategy can
potentially have high variance in the number of points local to each partition. To solve this problem, we
implemented the option to create the boundaries for each partition using the median of the set of all point
positions. The median is recursively found on smaller sets of these positions to create the number of
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boundaries needed; in the one-dimensional case, a total of p processors requires p − 1 medians to be
computed. To compute the medians, we used a median of medians algorithm implemented in parallel. The
algorithm does not find the exact median, but instead yields an accurate estimate. The algorithm is as
follows for one-dimensional data:

1. Each process sorts its array of local position values using quicksort.

2. Each process reports the median of its local array, or the local median, to the root process, which
inserts each value into a heap and broadcasts the median of the collected medians to all other
processors. This is the global median.

3. Each process now does the following:

(a) If size of local position values array = 0, stop.

(b) If local median < global median, remove values less than the local median from consideration
and go to step 2.

(c) If global median > local median, remove values greater than the local median from
consideration and go to step 2.

(d) If global median = local median, stop.

4. Once all processes have stopped, the root process will find the global median for the last time and
broadcast it to all other processors; this is the result of the algorithm.

Quicksort is used for each process to sort its local array because there are no guarantees on what the values
will be, likely giving the average complexity of n log n. A heap is used because by the root process to store
the medians as heap insertion has a complexity of log n. Thus, the resulting complexity of the approximate
median finding algorithm for finding all necessary medians is:

O
(

n
p

log
n
p

+ log p
[
log

n
p

log
(
log

n
p

)
+ log p + comm

])
(2)

as the median must be computed log p times recursively. Figure 2 represents a 2-dimensional set of points
partitioned with the Load-Balancing algorithm. By finding the approximate median of the X and Y values
of the points, PLATO creates boundaries that result in an almost equal number of points belonging to each
partition and process. In this case, each process now has 3 points, which is a more evenly distributed result
than using geometric partitioning.

3.2.3 Pre-fetching

For both geometry-based and load-based strategies of data partitioning, a pre-fetching value represented by
epsilon (ε) can be specified. ε is a positive real number which is added to the upper boundary and
subtracted from the lower boundary of each process. Figure 3 and Fig. 4 represent a pre-fetching value of
0.1 applied to the geometry-based and load-based boundary methods respectively, and show how
pre-fetching increases the overall amount of communication and affects load-balancing. Points that are
within the dashed line on Fig. 3 and Fig. 4 are sent to multiple processes. For example, the point at (0.584,
0.480) belongs to only one partition as shown in Fig. 1, but belongs to all four partitions after the
pre-fetching value is applied to the boundaries as shown in Fig. 3.
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Figure 3. Geometric-based partitioning with
pre- fetching value of 0.1.

Figure 4. Load-based partitioning with pre-
fetching value of 0.1.

4. Tests and Results

4.1 Batching/Non-Batching Communication

PLATO sends a user-specifiable number of particles per MPI call. At least, 1 point can be sent at a time,
but, in general, a higher amount will reduce the total time taken as it will require less MPI calls but transfer
the same total number of points and each MPI call adds a certain overhead to the overall runtime. Figure 5
shows the runtime and Fig. 6 shows the scaling for batching and non-batching communication, or, in our
tests, sending 100 points and 1 point with each MPI call, respectively.

While a higher value will generally result in better performance as indicated by our results, there is a limit
to how much data can be sent per MPI call, limited by the MPI implementation itself. If there are a large
number of point attributes, it may not be possible to send 100 points per MPI call, in which case a lower
value must be used. Additionally, the highest possible batching value may not always be the fastest; the
optimal number of points to send at one time is highly dependent on the machine used, and user testing
may be required to find the best value for a given machine.

4.2 Pre-fetching

The user-defined pre-fetching value determines the amount of pre-fetching that PLATO computes. The
result is that points can be sent from one processor to multiple others, increasing the total number of points
that all processors have together on completion. Figure 7 and Fig. 8 show the runtime and speedup for
different values of ε.

Our results show that a large enough pre-fetching value can cause parallel speedup values to deteriorate,
which we attribute to more processes receiving duplicates for higher values of p, resulting in redundant
communication overhead. For lower values of ε, however, the speedup generally has a higher value.
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Figure 5. Comparison of runtime of batching
and non- batching communication.

Figure 6. Comparison of speedup of batching
and non- batching communication.

Figure 7. Comparison of runtime of different
values of ε.

Figure 8. Comparison of speedup of different
values of ε.

4.3 Point Attributes

In any scientific application, each n-dimensional point in the input data set is associated with one or more
attributes, such as, mass, temperature, a string tag, an integer tag, etc. When partitioning the input data, the
attribute information for each point must also be communicated to the appropriate destination processors.
PLATO supports a user-specifiable number of floating- point numbers, integers, characters, and/or strings
(any combination thereof) associated with each point and sent along with the point’s position as the data is

x



partitioned. The resulting effect on performance is an increase in the overall time as a higher number of
point attributes results in a higher communication cost.

The runtime and parallel speedup are represented in Fig. 9 and Fig. 10, respectively, and shows that, in our
tests, a higher number of attributes results in a higher runtime.

Figure 9. Comparison of runtime with different
numbers of attributes.

Figure 10. Comparison of speedup with different
numbers of attributes.

4.4 Partitioning Method

The two different partitioning methods that PLATO implements are geometry-based and load-based
partitioning. The geometric method requires less computation than the load-based method, as the
load-based method implements a median-selection algorithm to determine the partition boundaries.
However, depending on the distribution of the points, the geometric method is not guaranteed to be faster
as it may result in a high number of points being sent to one process relative to the other processes,
increasing the total time that a single process takes to receive points. In our testing, the points were evenly
distributed, so the geometry-based method generally has the lower runtime as shown in Fig. 11.

4.5 Conclusions and Recommendations

Given our test results, we draw the following conclusions on performance and offer some recommendations
for the users:

1. A larger batching amount will generally decrease PLATO runtime, but depending on the application,
may not be possible. Thus, a default value is used which decreases the batching amount with a
corresponding increase in the number of point attributes. The value itself can be user-specified,
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Figure 11. Comparison of runtime of different
partitioning methods.

Figure 12. Comparison of speedup of different
partitioning methods.

which may be preferred in cases where communication bandwidth is of concern, like in a distributed
memory cluster.

2. A higher pre-fetching value will increase PLATO runtime. However, pre-fetching may be
unavoidable for the subsequent computational analysis.

3. Increasing the number of point attributes adds a predictable runtime overhead to PLATO.

4. The load-based partitioning method will typically result in a longer PLATO runtime than geometric
partitioning, but the resulting partitions will be more evenly distributed. This can be essential to
ensuring load-balance in the subsequent computational analysis. Depending on the distribution of the
points and the desired partitioning distribution, geometric partitioning can still result in an acceptable
distribution.
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PLATO (Parallel Load Assignment Tool) User Manual 
 

A. Contents: 

 

●     Formatter.h, Formatter.c 

●     LoadBalancer.h, LoadBalancer.c 

●     ParticleSplitter.h, ParticleSplitter.c 

●     StartupFile 

●     Makefile 

 

B. How to use PLATO: 

 

1. Use the Makefile to compile PLATO. Makefile uses the mpicc command. 

 

2. Configure the StartupFile. Each line of the StartupFile is explained here: 

 

 

a. FileTarget - Place the string of the file that contains your point data here. Example: “File 

Target = test.txt” 

 

b. Number of Points - This field determines the total number of points read by PLATO. Not 

affected by number of processors used. Example: “Number of Points = 100000” 

 

c. Number of Dimensions - This field should be equal to the number of dimensions in your 

points' positional data. Example: “Number of Dimensions = 3” 

 

 

d. Number of Attributes - This field should equal the total number of attributes you need to 

associate with each point. Example: “Number of Attributes = 3” 

 

e. Type of each Attribute - This field should contain a character to represent the type of each 

attribute in the order that they appear in your data file. Example: “Type of each Attribute 

('c' or 'i' or 's' or 'f') = c i f”. PLATO recognizes four different attribute types. Each type is 

stored internally as the C language type of the same name, with the exception of string: 

i. c = character 

ii. i = integer 

iii. s = string 

iv. f = float 

 

f. Processor Layout - This field should contain the processor topology you wish to partition 

your points by. Should have a number of integers equal to the number of dimensions you 

specify. Note that these numbers multiplied together should also be the number of 



processes you run PLATO with. For instance, the following example should be run with 4 

processes. Example: Processor Layout (e.x. 3 3 2) = 2 2 1 

 

g. Epsilon - Epsilon is identical to the pre-fetching value. Each process will expand its 

geometric boundaries by this amount in all directions. Example: Epsilon = 0.1 

 

 

h. Geometric or Load-Based Partitioning - Geometric Partitioning creates boundaries by 

evenly divining up the span of your point data. Load-Based uses median finding to ensure 

equal partition size as output. Example: “Geometric or Load-Based Partitioning (G/L) = L” 

 

i. Receive Array Size - Only use this field if your machine does not have enough memory to 

hold all data. Leave blank for the default value which will attempt to keep all points in 

memory. Example: “Receive Array Size = 10000” 

 

3. Run PLATO with appropriate number of processors. PLATO does not take command line 

arguments. 

 

4. Partitioned output files are placed in this directory and named PartitionedFile0, PartitionedFile1, 

etc. with the appropriate extension as specified. 
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Chapter 1

File Index

1.1 File List

Here is a list of all documented files with brief descriptions:

Formatter.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
LoadBalancer.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
ParticleSplitter.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ParticleSplitter.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Chapter 2

File Documentation

2.1 Formatter.h File Reference

Enumerations

• enum attribute_type { FLOAT, INTEGER, CHARACTER, STRING }

Functions

• int ConvertFile (char ⇤fileTarget, long long ⇤fileSize, int numParticles, int numDimensions, int numAttributes,
attribute_type ⇤attribute_types)

• void OutputFile (float ⇤array, int ⇤ints, float ⇤floats, char ⇤chars, char ⇤strings, int numDimensions, int numInts,
int numFloats, int numChars, int numStrings, int numPoints, char fileType, int fileIndex)

• int CheckEOF (int numChars, FILE ⇤fr)

2.1.1 Function Documentation

2.1.1.1 CheckEOF()

int CheckEOF (

int numChars,

FILE ⇤ fr )

Checks numChars chars in stream for EOF. If EOF not found, returns characters to stream.

Returns

1 if EOF is found, 0 if otherwise



4 File Documentation

Parameters

numChars Number of characters from fr to read
fr File to read chars from

2.1.1.2 ConvertFile()

int ConvertFile (

char ⇤ fileTarget,

long long ⇤ fileSize,

int numParticles,

int numDimensions,

int numAttributes,

attribute_type ⇤ attribute_types )

Converts fileTarget to an internal binary file.

Returns

1 on success, 0 on error

Parameters

fileTarget String of target file. Assigned the string of the converted file upon returning

fileSize Assigned the size of the .ibin file after creation

numParticles Number of points to read from fileTarget

numDimensions Number of dimensions of the position of each point
numAttributes Number of attributes for each point in fileTarget

attribute_types Array of attribute_type indexed on order of each attribute in fileTarget

2.1.1.3 OutputFile()

void OutputFile (

float ⇤ array,

int ⇤ ints,

float ⇤ floats,

char ⇤ chars,

char ⇤ strings,

int numDimensions,

int numInts,

int numFloats,

int numChars,

int numStrings,

int numPoints,

char fileType,

int fileIndex )
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Places partitioned points into file of specified type.
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Parameters

array Array of positional data of points
numDimensions Number of dimensions of the position of each point
numPoints Number of points to output to file (same as number of points in array)
fileType Specifies type of output file. 'T' = text file, 'B' = binary file, 'C' = csv file
fileIndex Number of file, not necessarily equal to but related to processor rank

2.2 LoadBalancer.h File Reference

Functions

• float FindMedian (float ⇤array, int targetDimension, int numPoints, int numDimensions, int rank, int size, float
lowerBound, float upperBound, MPI_Comm ⇤cartComm)

• float FindMedianRecursively (float ⇤tmpArray, float ⇤medians, int numPoints, int rank, int size, MPI_Comm
⇤cartComm)

2.2.1 Detailed Description

Finds median of positional data

2.2.2 Function Documentation

2.2.2.1 FindMedian()

float FindMedian (

float ⇤ array,

int targetDimension,

int numParticles,

int numDimensions,

int rank,

int size,

float lowerBound,

float upperBound,

MPI_Comm ⇤ cartComm )

Populates temporary array from array to sort and calls recursive method

Returns the median of the entire set of particles (of all processes/partitions)

Parameters

array Array of point positional data
targetDimension Specifies which dimension to find the median of. Can be 0 - (n-1) for an n-dimensional

space
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2.3 ParticleSplitter.c File Reference 7

Parameters

numParticles Total number of points in array
numDimensions Number of dimensions of the physical space
rank Rank of calling process

size Total number of processes
lowerBound Lower bound of all points considered. Points with value below lowerBound in the

targetDimension will not be placed into tmpArray nor included in median finding, but will
remain in array

upperBound Upper bound of all points considered. Points with value above upperBound in the
targetDimension will not be placed into tmpArray nor included in median finding, but will
remain in array

cartComm Communicator passed to MPI functions

2.2.2.2 FindMedianRecursively()

float FindMedianRecursively (

float ⇤ tmpArray,

float ⇤ medians,

int numParticles,

int rank,

int size,

MPI_Comm ⇤ cartComm )

Finds median of the set of all combined tmpArray among processes

Recursive method used by FindMedian()

Parameters

tmpArray Local process' positional data
medians Populated with all process' medians to find median of medians. Relavent only at root
numParticles Number of points that have data in tmpArray
rank Rank of calling process

size Total number of processes
cartComm Communicator passed to MPI functions

2.3 ParticleSplitter.c File Reference

Variables

• const int MAX_PACKBUF_SIZE = 1000
• const int MAX_RECVBUF_SIZE = 1000
• int MAX_RECV_SIZE = -1
• const int MAX_STRING_SIZE = 50
• const int PARTICLES_BETWEEN_PROBES = 20
• int SEND_SIZE = 100
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2.3.1 Detailed Description

Reads information from StartupFile in order to read the particle information from the Target File. Uses Formatter.c
to convert the Target File to an internal binary (.ibin) file that is read in parallel. Uses LoadBalancer.c to find medians
if Load-balancing is specified by the user in the StartupFile.

2.3.2 Variable Documentation

2.3.2.1 MAX_PACKBUF_SIZE

const int MAX_PACKBUF_SIZE = 1000

Maximum allowed size of buffer of MPI_Packed particles pointed to MPI_Isend. Will use MPI_Waitall if
reached.

2.3.2.2 MAX_RECV_SIZE

int MAX_RECV_SIZE = -1

Maximum allowed size of unpacked particle data to remain in memory. Will write to temporary file if reached.

2.3.2.3 MAX_RECVBUF_SIZE

const int MAX_RECVBUF_SIZE = 1000

Maximum allowed size of buffer of MPI_Packed particles pointed to MPI_Irecv. Will use MPI_Waitall if
reached.

2.3.2.4 MAX_STRING_SIZE

const int MAX_STRING_SIZE = 50

Maximum allowed size of strings.

2.3.2.5 PARTICLES_BETWEEN_PROBES

const int PARTICLES_BETWEEN_PROBES = 20

Number of particles checked to send before MPI_Iprobe is called.

2.3.2.6 SEND_SIZE

int SEND_SIZE = 100

Number of points to batch send with each MPI_Isend and MPI_Irecv call.
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2.4 ParticleSplitter.h File Reference

Functions

• void ReadStartupFile (char ⇤target, int ⇤numPoints, int ⇤numDimensions, int ⇤numAttributes, attribute_type
⇤attributeTypes, int ⇤layout, float ⇤epsilon, int ⇤numInts, int ⇤numFloats, int ⇤numChars, int ⇤numStrings, int
⇤geometric)

• void ReadFile (char ⇤target, int fileSize, int numInts, int numFloats, int numChars, int numStrings, float ⇤array,
int ⇤ints, float ⇤floats, char ⇤chars, char ⇤strings, int rank, int size, int numPoints, int ⇤numPointsRead, int
numDimensions, int numAttributes, attribute_type ⇤attributeTypes)

• void SendParticle (int amount, int ⇤particleIndeces, void ⇤packBuffer, int rank, int numDimensions, int num -

Ints, int numFloats, int numChars, int numStrings, int ⇤ints, float ⇤floats, char ⇤chars, char ⇤strings, float
⇤array, float ⇤recvArray, int ⇤recvInts, float ⇤recvFloats, char ⇤recvChars, char ⇤recvStrings, MPI_Request
⇤sendRequests, int ⇤numSendRequests, int ⇤numLocalPoints, int ⇤recvPos, char ⇤tmpFileName, int send -

Rank, MPI_Comm ⇤cartComm)

• void RecvParticle (int source, int tag, void ⇤recvBuffer, int total, int ⇤arrayPos, MPI_Comm ⇤cartComm, M -

PI_Request ⇤recvRequests, int ⇤numRecvRequests)

• void WriteParticles (int ⇤recvPos, float ⇤recvArray, int ⇤recvInts, float ⇤recvFloats, char ⇤recvChars, char
⇤recvStrings, int numDimensions, int numInts, int numFloats, int numChars, int numStrings, char ⇤tmpFile -

Name)

• void UnpackParticle (int recvSize, void ⇤buffer, int total, int numDimensions, int numInts, int numFloats, int
numChars, int numStrings, int ⇤recvPos, float ⇤recvArray, int ⇤recvInts, float ⇤recvFloats, char ⇤recvChars,
char ⇤recvStrings, char ⇤tmpFileName, MPI_Comm ⇤cartComm, int ⇤numLocalPoints)

• void GetMedians (int height, int index, float ⇤medians, float ⇤array, int numParticlesRead, int targetDimension,
int numDimensions, int rank, int size, float min, float max, MPI_Comm ⇤cartComm)

2.4.1 Function Documentation

2.4.1.1 GetMedians()

void GetMedians (

int height,

int index,

float ⇤ medians,

float ⇤ array,

int numParticlesRead,

int targetDimension,

int numDimensions,

int rank,

int size,

float min,

float max,

MPI_Comm ⇤ cartComm )

Recursive median finder
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2.4.1.2 ReadFile()

void ReadFile (

char ⇤ target,

int fileSize,

int numInts,

int numFloats,

int numChars,

int numStrings,

float ⇤ array,

int ⇤ ints,

float ⇤ floats,

char ⇤ chars,

char ⇤ strings,

int rank,

int size,

int numPoints,

int ⇤ numPointsRead,

int numDimensions,

int numAttributes,

attribute_type ⇤ attributeTypes )

Reads .ibin file in local directory

Parameters

target String of targetFile

fileSize FileSize in bytes
numInts Number of integer attributes per point

numFloats Number of float attributes per point
numChars Number of character attributes per point
numStrings Number of string attributes per point

array Array of positional data, populated from file on return
ints Array of integer attributes, populated from file on return

floats Array of float attributes, populated from file on return
chars Array of character attributes, populated from file on return
strings Array of string attributes, populated from file on return

rank Rank of calling process

size Total number of processes to read from file
numPoints Total number of points
numPointsRead Number of points read from file, populated on return
numDimensions Number of dimension of positional data
numAttributes Total number of attributes per point
attributeTypes Array of attribute types in order as shown in file, populated by ReadStartupFile()

2.4.1.3 ReadStartupFile()

void ReadStartupFile (

char ⇤ target,
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int ⇤ numPoints,

int ⇤ numDimensions,

int ⇤ numAttributes,

attribute_type ⇤ attributeTypes,

int ⇤ layout,

float ⇤ epsilon,

int ⇤ numInts,

int ⇤ numFloats,

int ⇤ numChars,

int ⇤ numStrings,

int ⇤ geometric )

Reads StartupFile in local directory

Parameters

target string of StartupFile

numPoints Maximum number of points to read
numDimensions Number of dimensions in points' space
numAttributes Number of total attributes associated with each point
attributeTypes Array of attribute_types populated in order as they appear in StartupFile (and by targetFile

by requirement)
layout Processor Layout
epsilon Pre-fetching value

numInts Equal to number of integer attributes per point on return

numFloats Equal to number of float attributes per point on return
numChars Equal to number of character attributes per point on return
numStrings Equal to number of string attributes per point on return

geometric Equal to 1 if using geometric partitioning or 0 if load-based on return

2.4.1.4 RecvParticle()

void RecvParticle (

int source,

int tag,

void ⇤ recvBuffer,

int total,

int ⇤ arrayPos,

MPI_Comm ⇤ cartComm,

MPI_Request ⇤ recvRequests,

int ⇤ numRecvRequests )

Receives at most SEND_SIZE MPI_Packed particles from a single source

Parameters

source Rank of sending process

tag Tag of message to be received

recvBuffer Buffer of MPI_Packed pointed to MPI_Irecv()
total Maximum possible size of each message
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Parameters

arrayPos Number of points currently received
cartComm Communicator passed to MPI functions
recvRequests Array of requests created by MPI_Irecv()
numRecvRequests Total number of active recvRequests

2.4.1.5 SendParticle()

void SendParticle (

int amount,

int ⇤ particleIndeces,

void ⇤ packBuffer,

int rank,

int numDimensions,

int numInts,

int numFloats,

int numChars,

int numStrings,

int ⇤ ints,

float ⇤ floats,

char ⇤ chars,

char ⇤ strings,

float ⇤ array,

float ⇤ recvArray,

int ⇤ recvInts,

float ⇤ recvFloats,

char ⇤ recvChars,

char ⇤ recvStrings,

MPI_Request ⇤ sendRequests,

int ⇤ numSendRequests,

int ⇤ numLocalPoints,

int ⇤ recvPos,

char ⇤ tmpFileName,

int sendRank,

MPI_Comm ⇤ cartComm )

Packs and sends amount particles. If sendRank = rank then MPI_Isend() will not be called.

Parameters

amount Number of points to send with MPI_Isend() call
particleIndeces Indeces of array to send
packBuffer Buffer of MPI_Packed points used by MPI_Isend()
rank Rank of calling process

numDimensions Number of dimension of positional data
numInts Number of integer attributes per point

numFloats Number of float attributes per point
numChars Number of character attributes per point
numStrings Number of string attributes per point

ints Array of integer attributes
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Parameters

floats Array of float attributes
chars Array of character attributes
strings Array of string attributes

array Array of positional data
recvArray Array of partitioned positional data
recvInts Array of partitioned integer attributes

recvFloats Array of partitioned float attributes
recvChars Array of partitioned character attributes
recvStrings Array of partitioned string attributes

sendRequests Array of requests created by MPI_Isend()
numSendRequests Total number of active sendRequests
numLocalPoints Number of points in local arrays
recvPos Number of points currently received
tmpFileName Name of temporary file. Written to only if receive arrays overflow
sendRank Rank of process to send points to
cartComm Communicator passed to MPI functions

2.4.1.6 UnpackParticle()

void UnpackParticle (

int recvSize,

void ⇤ buffer,

int total,

int numDimensions,

int numInts,

int numFloats,

int numChars,

int numStrings,

int ⇤ recvPos,

float ⇤ recvArray,

int ⇤ recvInts,

float ⇤ recvFloats,

char ⇤ recvChars,

char ⇤ recvStrings,

char ⇤ tmpFileName,

MPI_Comm ⇤ cartComm,

int ⇤ numLocalPoints )

Unpacks particles and places in receive arrays

Parameters

buffer Buffer of received MPI_Packed points
total Total size of each MPI_Packed object
numDimensions Number of dimension of positional data
numInts Number of integer attributes per point

numFloats Number of float attributes per point
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Parameters

numChars Number of character attributes per point
numStrings Number of string attributes per point

recvPos Number of points currently received
recvArray Array of partitioned positional data
recvInts Array of partitioned integer attributes

recvFloats Array of partitioned float attributes
recvChars Array of partitioned character attributes
recvStrings Array of partitioned string attributes

tmpFileName Name of temporary file used if receive arrays overflow
cartComm Communicator passed to MPI functions
numLocalPoints Total number of received points

2.4.1.7 WriteParticles()

void WriteParticles (

int ⇤ recvPos,

float ⇤ recvArray,

int ⇤ recvInts,

float ⇤ recvFloats,

char ⇤ recvChars,

char ⇤ recvStrings,

int numDimensions,

int numInts,

int numFloats,

int numChars,

int numStrings,

char ⇤ tmpFileName )

Writes particles in receive arrays to temporary file

Parameters

recvPos Number of points currently received
recvArray Array of partitioned positional data
recvInts Array of partitioned integer attributes

recvFloats Array of partitioned float attributes
recvChars Array of partitioned character attributes
recvStrings Array of partitioned string attributes

numDimensions Number of dimension of positional data
numInts Number of integer attributes per point

numFloats Number of float attributes per point
numChars Number of character attributes per point
numStrings Number of string attributes per point

tmpFileName Name of temporary file used if receive arrays overflow
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